Numerical Solution of a System of Polynomial Parametric form Fuzzy Linear Equations
نویسنده
چکیده
Since fuzzy logic was introduced by Lotfi Zadeh in 1965 (41), it has had many successful applications in all fields that one can imagine. The reason is that many real-world applications problems are involved the systems in which at least some parameters are represented by fuzzy numbers rather than crisp numbers and linguistic labels such as small and large are also associated with the fuzzy sets. On the other hand a system of fuzzy linear equations may appear in a wide variety of problems in various areas such as mathematics, statistics, physics, engineering and social sciences. The objective of this chapter is to introduce a method to find a good approximate solution to a system of fuzzy linear equations, and first we need to be familiar with some notations on fuzzy numbers in this chapter, however it is assumed that the reader is relatively familiar with the elementary fuzzy logic concepts. In (14), Chong-Xin and Ming represented a fuzzy number ũ by an ordered pair of functions (u(r),u(r)), 0≤ r ≤ 1, which satisfies some requirements. In papers and books the authors mainly have used linear membership functions as spreads, because they are conceptually the simplest, have a clear interpretation and play a crucial role in many areas of fuzzy applications, and almost every works on this field of study have been done on triangular or trapezoidal fuzzy numbers, but polynomial form fuzzy numbers are simple and have a clear interpretation too, and in order to obtain a richer class of fuzzy numbers we use polynomials of the degree higher than one, as the spreads of membership functions of fuzzy numbers. Thus in (2) we introduced a type of fuzzy numbers in which both left spread function u(r) and right spread function u(r) are polynomials of degree at most m. We named this type of fuzzy numbers, m-degree polynomial-form fuzzy numbers. The main aim of introducing this type of fuzzy numbers is that in many applications of fuzzy logic and fuzzy mathematics we need (or it is better) to work with the same fuzzy numbers. It has been shown in (2) that a fuzzy number ũwith continuous left and right spread functions can be approximated by a fuzzy number with m-degree polynomial-form, where choosing m depends on the shape of left and right spread functions L and R, and the derivation order of them. Some applications of this approximation in the case m = 1 (trapezoidal fuzzy numbers) are given in (3), and some properties of this approximation operator are recently given in (10). There are many other literatures which authors tried to approximate a fuzzy number by a simpler one (2; 3; 4; 18; 25; 27; 28; 29; 30; 31; 32; 42). Also there are some distances defined by authors to compare fuzzy numbers (35; 37). 23 4
منابع مشابه
Numerical solution of a system of fuzzy polynomial equations by modified Adomian decomposition method
In this paper, we present some efficient numerical algorithm for solving system of fuzzy polynomial equations based on Newton's method. The modified Adomian decomposition method is applied to construct the numerical algorithms. Some numerical illustrations are given to show the efficiency of algorithms.
متن کاملNew concepts on the fuzzy linear systems and an application
As we know, developing mathematical models and numerical procedures that would appropriately treat and solve systems of linear equations where some of the system's parameters are proposed as fuzzy numbers is very important in fuzzy set theory. For this reason, many researchers have used various numerical methods to solve fuzzy linear systems. In this paper, we define the concepts of midpoint a...
متن کاملNew solution of fuzzy linear matrix equations
In this paper, a new method based on parametric form for approximate solu-tion of fuzzy linear matrix equations (FLMEs) of the form AX = B; where Ais a crisp matrix, B is a fuzzy number matrix and the unknown matrix X one,is presented. Then a numerical example is presented to illustrate the proposedmodel.
متن کاملMinimal solution of fuzzy linear systems
In this paper, we use parametric form of fuzzy number and we converta fuzzy linear system to two linear system in crisp case. Conditions for the existence of a minimal solution to $mtimes n$ fuzzy linear equation systems are derived and a numerical procedure for calculating the minimal solution is designed. Numerical examples are presented to illustrate the proposed method.
متن کاملPositive solution of non-square fully Fuzzy linear system of equation in general form using least square method
In this paper, we propose the least-squares method for computing the positive solution of a $mtimes n$ fully fuzzy linear system (FFLS) of equations, where $m > n$, based on Kaffman's arithmetic operations on fuzzy numbers that introduced in [18]. First, we consider all elements of coefficient matrix are non-negative or non-positive. Also, we obtain 1-cut of the fuzzy number vector solution of ...
متن کامل